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1. Introduction

In four dimensions the twin requirements of general covariance and the Lorentz-invariance

of the vacuum imply that the vacuum energy inevitably appears to gravity like a 4D

cosmological constant, with a vacuum energy, ρ, corresponding to a cosmological constant

of order Λ = 8πGρ (where G here denotes Newton’s constant). The cosmological constant

problem [1] refers to the huge mismatch between the large vacuum energy expected from

the known quantum zero-point fluctuations and the very small upper limit on (or the

observed value for) the cosmological constant coming from cosmology.

Higher dimensional theories are of interest for the cosmological constant problem be-

cause they offer the possibility that the gravitational influence of a 4D vacuum energy need

not be a 4D cosmological constant. In particular, within a higher-dimensional context the

possibility exists that the gravitational response of a large 4D vacuum energy might be to

curve the extra dimensions rather than the observable four, raising the hope that a large

vacuum energy need not lead to a large 4D cosmological constant. The introduction of

branes into the picture considerably sharpens this hope, since solutions exist to the higher-

dimensional field equations for which the effective 4D cosmological constant vanishes even

though they are sourced by large 4D energy configurations (typically large brane tensions).
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In recent years these observations have stimulated several proposals to realize this

possibility in a concrete way [2 – 5], all with the theme that large 4D energy densities need

not imply a strongly-curved 4D geometry within a brane-world picture. Although this is

arguably a step forward, it is not the end of the story since the mere existence of such

solutions does not directly address the issues of fine-tuning which underly the cosmological

constant problem. These issues come in several forms, either to do with the stability of

the solution under the quantum renormalization of the underlying parameters, or to do

with stability of the time evolution of the solutions against perturbations in the initial

conditions (for a review of some of these concerns see [6]).

One of the key questions underlying these naturalness issues asks: What conditions

must be required of the various source brane configurations in order to make the observed

4 dimensions flat? This question is crucial for addressing the fine-tuning issue because

one must always be on guard against hidden fine tunings. In particular, if the properties

of various branes must be carefully adjusted (or adjusted relative to one another) then it

is the stability of this particular adjustment (against renormalization, say) which must be

established in order to solve the cosmological constant problem. Indeed the main criticisms

to proposals [2 – 5] fall into this category [7 – 9] (see also [6, 10]).

It is our purpose in this paper to provide a general answer to this question for a scalar-

tensor-flux field equations arising in D-dimensional supergravity theories, for solutions

having n maximally-symmetric dimensions that are sourced by branes having co-dimension

≥ 2. (The case of co-dimension 1 – as appropriate for Randall-Sundrum models [11], for

instance – differs from other co-dimensions and is presently better understood [7].) We

defer to a later paper the discussion of the naturalness issues associated with the quantum

corrections to, and the stability of, the solutions presented here.

For these systems we obtain the following results:

• We derive a general expression, eq. (2.8), which relates (a particular average over

the extra dimensions of) the curvature of the maximally-symmetric n dimensions

to the asymptotic form taken by the bulk metric very close to the source branes.

Our expression generalizes similar expressions which have been derived, either for

6D supergravities in the co-dimension 2 case [12] or for higher-dimensional non-

supersymmetric gravity [13]. Our result also applies to FRW-like time-dependent

geometries for which the n maximally-symmetric dimensions are spatial, in which

case the spatial curvature is related to both the near-brane asymptotic forms and to

contributions from spatial slices in the remote past and future.

• We provide a very general classification of the near-brane form taken by the bulk

fields near their sources. Using arguments in the spirit of the BKL analysis of time-

dependence near singularities [18] we show that in the near-brane limit the higher-

dimensional supergravity fields have a power-law dependence on the proper distance,

r, from the branes. We show that the bulk fields are very generically singular near

the branes, and that the bulk field equations impose Kasner-like relations, eqs. (3.8)

and (3.10), amongst these powers, which strongly restrict the kinds of powers (and

so also the singularities) which arise.

– 2 –
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• Combining the above two points allows an identification of how the curvature of the

large n dimensions depends on the asymptotic powers which govern the asymptotic

near-brane behaviour of the bulk fields. This relation shows that the large n dimen-

sions must be flat in the absence of singularities within the extra dimensions (or if

these singularities are only conical). In the more generic case of singular configu-

rations we find that a flat n dimensions requires either the extra-dimensional warp

factor, W , or the dilaton, eϕ, must grow like an inverse power of r as the brane is

approached (i.e. as r → 0). (In our conventions eϕ ¿ 1 corresponds to weak coupling

in string theory.)

• As an application we specialize the above results to the case of 6D supergravity

compactified to 4 dimensions, and use them to show the existence of a new class

of solutions for which the maximally-symmetric 4 dimensions are de Sitter-like (or

anti-de Sitter-like), unlike all of those which are presently known.

Our presentation is organized in the following way. The next section sets up the super-

gravity equations of interest and their compactification to n maximally-symmetric dimen-

sions. It is here that we derive the key relationship, eq. (2.8), relating the n-dimensional

curvature to the asymptotics of bulk fields near the source-brane singularities. Section III

then examines the relevant near-brane asymptotic forms for the bulk fields, and derives

the power-law behaviour which the bulk equations dictate. These are then used in the

results of Section II to more directly relate the n-dimensional curvature to the power-law

dependence of the bulk fields in the near-brane limit. Finally, Section IV specializes to 6D

supergravity compactified to 4 maximally-symmetric dimensions, and shows how to use

the previous two sections to generalize the class of 6D solutions to include those having de

Sitter-like and anti-de Sitter-like 4-dimensional slices.

2. The curvature-asymptotics connection

In this section we summarize the field equations of interest, which are the bosonic parts

of the equations of motion for many higher-dimensional supergravities. We also here spe-

cialize the fields appearing in these equations to the most general configurations which are

maximally symmetric in (3+1) non-compact dimensions, as is appropriate for describing

the warped compactifications of interest. We allow these solutions to have singularities

(more about which below) at various points within the extra dimensions corresponding to

the positions of various branes having co-dimension ≥ 2. Our goal in so doing is to estab-

lish a general connection, eq. (2.8), between the curvature of the noncompact 4D geometry

and the asymptotic behaviour of the bulk fields in the vicinity of the various branes.

2.1 The field equations

Our starting point is the following action in D spacetime dimensions

S = −
∫

dDx
√−g

[

1

2κ2
gMN

(

RMN + ∂Mϕ∂Nϕ
)

+
1

2

∑

r

1

(pr + 1)!
e−prϕF 2

r + A eϕ

]

,

(2.1)
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where κ2 = 8πG denotes the higher-dimensional Newton constant and A is a dimensional

constant. The fields Fr are the (pr +1)-form field strengths for a collection of pr-form gauge

potentials, Ar, and F 2 = FM1..Mpr+1
FM1..Mpr+1. When A = 0 this is sufficiently general

to encompass the bosonic parts of a variety of higher-dimensional, ungauged supergravity

lagrangian densities [14]. When A 6= 0 the dilaton potential has the form found in chiral

6D supergravity [15].

The field equations obtained from this action are:

¤ ϕ − κ2A eϕ + κ2
∑

r

pr

2(pr + 1)!
e−prϕF 2

r = 0 (dilaton)

∇M

(

e−prϕ FMN...Q
r

)

+ (CS terms) = 0 (pr-form) (2.2)

RMN + ∂Mϕ∂Nϕ + κ2
∑

r

1

pr!
e−prϕ

[

F 2
r

]

MN
+

2

D − 2
(¤ ϕ) gMN = 0 (Einstein) ,

where ‘(CS terms)’ denotes terms arising from any Chern-Simons terms within the defini-

tion of F(r), and we define
[

F 2
]

MN
= F P ...R

M FNP...R . (2.3)

The ability to write the term proportional to gMN in the Einstein equation in terms of

¤ϕ is a consequence of the particular powers of eϕ which pre-multiply each of the terms

in the action, (2.1). This choice corresponds to the existence of a scaling symmetry of the

classical field equations, according to which

gMN → ω gMN and eϕ → ω−1 eϕ , (2.4)

with constant ω and the field strengths, Fr, not transforming. Although this is not a

symmetry of the action, which transforms as S → ω(D−2)/2S, it does take solutions of the

classical equations into one another.

2.2 Maximally-symmetric compactifications

We seek solutions to these equations for which n dimensions are maximally symmetric and

d = D − n are not. In most applications we have in mind n = 4, corresponding to having

3+1 maximally-symmetric directions and d = D− 4 static, compact euclidean dimensions.

But our analysis is general enough also to include (with minor modifications) situations of

interest to cosmology for which there are n = 3 maximally-symmetric spatial dimensions

and d = D − 4 time-dependent, compact dimensions.

To this end divide the D coordinates xM , M = 1...D, into n maximally-symmetric

coordinates, xµ, µ = 1...n, and the remaining d = D − n coordinates, yi, i = n + 1...d. We

use the metric ansatz which follows from maximal symmetry:

ds2 = ĝMN dxM dxN = W 2(y) gµν(x) dxµ dxν + g̃ij(y) dyidyj , (2.5)

where gµν is an n-dimensional maximally symmetric metric and g̃ij a generic d-dimensional

metric. Throughout this section, we use the convention that hats denote objects con-

structed from the full D-dimenional metric ĝMN , while tildes denote objects constructed

from the metric g̃ij . Tensors without hats or tildes are constructed from the metric gµν .

– 4 –



J
H
E
P
0
3
(
2
0
0
6
)
0
9
1

With these conventions the Einstein equation, eq. (2.2), specialized to the maximally-

symmetric directions reads

R̂µν +
2

D − 2
(¤̂ϕ)ĝµν = 0 , (2.6)

where we use that maximal symmetry implies ∂µϕ = 0 and FµN..P
r = 0 (and so

[

F 2
r

]

µν
= 0).

2.3 Relating curvature to bulk asymptotics

Using the metric ansatz, (2.5), we may write

ĝµν = W 2gµν , R̂µν = Rµν +
1

n
(W 2−n∇̃2W n) gµν and ¤̂ϕ = W−n∇̃i(W

ng̃ij∂jϕ) ,

(2.7)

where ∇̃2 = g̃ij∇̃i∇̃j. Since maximal symmetry implies Rµν = (R/n) gµν , these equations

allow eq. (2.6) to be simplified to

1

n
W n−2 R = −∇̃i

[

W ng̃ij∂j

(

lnW +
2ϕ

D − 2

)]

. (2.8)

This last equation represents the main result of this section, and is a generalization to

arbitrary dimensions of a similar result in 6 dimensions derived in ref. [12].

The significance of eq. (2.8) is most easily seen once it is integrated over the compact

d dimensions and Gauss’ Law is used to rewrite the right-hand side as a surface term:

1

n

∫

M
ddy

√

g̃ W n−2 R = −
∑

α

∫

Σα

dd−1y
√

g̃ Ni

[

W ng̃ij∂j

(

ln W +
2ϕ

D − 2

)]

, (2.9)

where Ni is an outward-pointing normal, with g̃ijNiNj = 1. (If time is one of the d

dimensions then the surface terms must include spacelike surfaces in the remote future

and past, for which g̃ijNiNj = −1.) If there are no singularities or boundaries in the

dimensions being integrated then the right-hand side vanishes, leading to the conclusion

that the product W n−2 R integrates to zero. Since R is constant and W n−2 is strictly

positive, this immediately implies R = 0, as concluded for 6D in ref. [12].

Our interest in what follows is the case where the right-hand side of eq. (2.8) does have

singularities corresponding to the presence of various source branes situated throughout

the extra dimensions. In this case eq. (2.8) still carries content provided we excise a

small volume about the positions of each singularity, thereby leaving a co-dimension-1

boundary, Σα, which surrounds each of the various brane positions. In this case eq. (2.9)

directly relates the curvature of the maximally-symmetric d dimensions to the sum over the

contributions to the right-hand side of the boundary contributions from each surface Σα.

Since these surfaces are chosen to be close to the source branes, these surface contributions

can be simplified using the asymptotic forms taken by the bulk fields in the immediate

vicinity of these sources. After a brief digression concerning the possible existence of

horizons in these geometries, we return in the next section to identify what these asymptotic

forms must be.
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Horizon formation. It is possible that for certain choices of brane sources horizons form

at some finite proper distance from the branes [16]. We investigate here the situations for

when this can occur, since such horizons could have implications for the crucial sum rule,

eq. (2.9). We consider three possible cases:

1. If n > 1 and one of the x coordinates is time, then the assumption of maximal

symmetry implies the metric, gµν , has either an ISO(n−1, 1), SO(n, 1) or SO(n−1, 2)

isometry group. Such a symmetry group precludes the formation of horizons.

2. If n > 1 and one of the y coordinates is time, then a horizon could be present in

the bulk, but this does not in itself interfere with the validity of the above formula

(2.9). Rather, it might instead imply that both spacelike and timelike boundaries

will contribute on its RHS.

3. In the special case n = 1 we have R = 0 trivially, leading to the stronger statement

that the divergence on the RHS of (2.9) vanishes. In this case the sum rule (2.9) breaks

down in the presence of a horizon because the signature of the g̃ metric changes at

the horizon and so Gauss’ Law is no longer well defined.

3. Near-brane solutions

In this section we identify the general asymptotic form taken by the bulk fields in the

immediate vicinity of any source branes, with an eye to its use in eq. (2.9) of the previous

section. We are able to keep our analysis quite general by arguing that these asymptotic

forms are given by powers of the distance from the source for co-dimension > 2 (or pos-

sibly logs for co-dimension 2) with the powers determined by explicitly solving the bulk

equations. Assuming these equations are dominated near the branes by the contributions

of the kinetic terms they may be integrated quite generally, leading to solutions corre-

sponding to Kasner-like [17] near-brane geometries. Given these solutions the validity of

the assumption that kinetic terms dominate can be checked a posteriori. Our arguments

closely resemble similar arguments used long ago [18] to identify the time-dependence of

spacetimes in the vicinity of space-like singularities.

3.1 Asymptotic near-brane geometries

To this end we assume that the dilaton field, ϕ, and the metric near the brane have the

form

ϕ ≈ q ln r and ds2 ≈ r2w gµν(x) dxµ dxν + dr2 + r2αfab(z) dzadzb , (3.1)

where w, α and q are constants. With respect to our initial metric ansatz, eq. (2.5), we see

that this corresponds to the choices

W (y) = rw and g̃ijdyidyj = dr2 + r2αfabdzadzb, (3.2)

where {yi} = {r, za}. If the supergravity of interest is regarded as describing the low-

energy limit of a perturbative string theory then our conventions are such that eϕ → 0

represents the limit of weak string coupling. We see that if q < 0 then the region of small

r lies beyond the domain of the weak-coupling approximation.

– 6 –
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We imagine the brane location to be given by r = 0 and the coordinate r is then

seen to represent the proper distance away from the brane. With this choice a surface

having proper radius r has an area which varies with r like rα(d−1), and so this area only

grows with increasing r if α > 0. The geometry in general has a curvature singularity at

r = 0, except for the special case α = 1 for which the singularity can be smooth (or purely

conical).

Finally, we specialize for simplicity to the case where there is only one non-vanishing

gauge flux which we take to be for a p-form potential whose field strength is F . With a

Freund-Rubin ansatz [19] in mind we also specialize to p = d − 1 and take F proportional

to the volume form of the d-dimensional metric g̃ij. Near r = 0, we assume

F ra1...ap ∼ rγ . (3.3)

With these assumptions, we now determine the powers α, w, q and γ by solving the

field equations in the region r ≈ 0. We do so by neglecting the contributions of fluxes or

the dilaton potential in the dilaton and Einstein equations, and by neglecting any Chern-

Simons contributions to the equations for the background p-form gauge potential. Once

we find the solutions we return to verify that the neglect of these terms is indeed justified.

The p-form equation gives the condition

0 = ∂r

(

√

ĝe−pϕF rz1...zp

)

∼ ∂r

[

rwn+α(d−1)−pq+γ
]

(3.4)

which leads (when p = d − 1) to the condition γ = (q − α)(d − 1) − wn, and so

F 2 ∼ r2q(d−1)−2wn . (3.5)

Consider next the dilaton equation. We first note that

¤̂ϕ =
1√
ĝ
∂M

(

√

ĝ ĝMN ∂Nϕ
)

∼ q[nw + α(d − 1) − 1] r−2. (3.6)

For comparison, the other terms in the dilaton equation of motion depend on r as follows:

e−pϕF 2 ∼ rq(d−1)−2wn and eϕ ∼ rq. (3.7)

Thus, provided q > −2 and q(d − 1) − 2wn > −2 (whose domains of validity we explore

below) all of the terms in the dilaton equation are subdominant to ¤̂ϕ, and so may be

neglected. The dilaton therefore effectively satisfies ¤̂ϕ = 0 near r = 0, and so from

eq. (3.6) we see that this requires

nw + α(d − 1) = 1. (3.8)

Next consider the rr-component of the Einstein equation. Given the assumed asymp-

totic form for the metric, we calculate

R̂rr = [−wn + nw2 + (α2 − α)(d − 1)] r−2

= [nw2 + α2(d − 1) − 1] r−2. (3.9)

– 7 –
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As before, we find that the F 2 term is subdominant if q(d−1)−2wn > −2. The rr-Einstein

equation therefore gives the additional constraint

nw2 + α2(d − 1) + q2 = 1. (3.10)

Notice that this equation restricts the ranges of w, α and q to be

− 1√
n
≤ w ≤ 1√

n
, − 1√

d − 1
≤ α ≤ 1√

d − 1
and − 1 ≤ q ≤ 1 . (3.11)

In particular it allows a regular solution (or one having a conical singularity) – i.e. one

having α = 1 – only if d = 2 and q = w = 0.

The Einstein equations in the maximally symmetric dimensions can be similarly eval-

uated using the assumed asymptotic form for the metric. The contribution of the induced

n-dimensional curvature tensor contributes to this equation subdominantly in r, and so

is not constrained to leading order. (In general, evaluating this equation to subdominant

order in r relates the n-dimensional curvature to the time-evolution of the exponents α, w

and q.) The leading term vanishes as a consequence of eq. (3.8), and so does not impose

any new conditions. Neither do the Einstein equations in the za directions.

The net summary of the bulk field equations on the parameters α, w and q is therefore

given by the two Kasner-like conditions (3.8) and (3.10). These two conditions therefore

allow a one-parameter family (parameterized, say, by q) of solutions in the vicinity of any

given singularity. Notice that the symmetry of these conditions under q → −q implies that

for any given asymptotic solution there is a new one which can be obtained from the first

through the weak-to-strong-coupling replacement eϕ → e−ϕ.

Regarding these singularities as brane sources, the one-parameter set of asymptotic

bulk configurations presumably corresponds to a one-parameter choice which is possible

for the couplings of the brane to bulk fields. For instance, at the lowest-derivative level

considered here this is plausibly related to the choice of dilaton coupling, such as if the

brane action were to take the D-brane form

Sb = −T

∫

dnξ
√
−h eλϕ , (3.12)

where ξµ represent coordinates on the brane world-volume, T is the brane tension, hµν

is the induced metric on the brane. Here the choice for λ (which is a known function of

brane dimension for D-branes) plausibly determines the value of q, and so the value of this

parameter is not determined purely from the bulk equations of motion.

We must now go back to ask whether the Kasner-like conditions (3.8) and (3.10) are

consistent with the requirements q > −2 and q(d − 1) − 2wn > −2. The first inequality

clearly follows from the last of eqs. (3.11), and so is automatic for the solutions of inter-

est. By contrast, constraints (3.8) and (3.10) are not sufficient to ensure that the second

inequality is satisfied, however, as is seen by using eq. (3.8) to rewrite it as q + 2α ≥ 0.

This is clearly not satisfied by the choices α = 0, w = 1/n and q = −
√

1 − 1/n. Since its

violation requires either α or q to be negative, it necessarily involves either surfaces, Σα,

whose area does not grow with their radius (α < 0) or the breakdown of the perturbative

supergravity approximation (q < 0). We exclude such solutions in what follows.

– 8 –
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While the requirement q > −2 is on solid ground, one might wonder about the other

inequality: Ξ ≡ q(d − 1) − 2wn > −2. In fact, by the equations of motion and the

assumed asymptotic form for the various fields, the choice Ξ < −2 is not consistent with

the requirement that there be a nonvanishing flux in the extra dimensions. Similarly, the

choice Ξ = −2 is also inconsistent if, as before, we require that α ≥ 0.

3.2 Asymptotics and curvature

We now use the above expressions to evaluate the combination of bulk fields which appears

on the right-hand side of eq. (2.9). The surface quantity which appears there is

fα ≡ −
∫

Σα

dd−1y
√

g̃ Ni

[

W ng̃ij∂j

(

ln W +
2ϕ

D − 2

)]
∣

∣

∣

∣

Σα

, (3.13)

and so evaluating this using Ni dyi = −dr (since the outward-pointing normal points

towards the brane at r = 0) and the asymptotic forms given above we find

∑

α

fα ∼
∑

α

lim
r→0

(

wα +
2 qα

D − 2

)

cα rαα(d−1)+nwα−1 =
∑

α

cα

(

wα +
2 qα

D − 2

)

, (3.14)

where the last equality uses eq. (3.8). The positive constants cα are defined by the condition
∫

Σα

dd−1y
√

g̃ W n ∼ cα rαα(d−1)+nwα .

It is the sign (or vanishing) of the sum in eq. (3.14) which governs the sign (or vanishing)

of the maximally-symmetric n-dimensional curvature. Several points here are noteworthy.

• fα always vanishes for any source at which the bulk equations are nonsingular (or

only has a conical singularity), because wα = qα = 0 at any such point. Consequently

the maximally-symmetric large n dimensions must be flat in the absence of any extra-

dimensional brane sources at whose positions the bulk fields are singular.

• The n-dimensional curvature can vanish even if fα 6= 0 provided that the sum of the

fα’s over all of the sources vanishes. However such a cancellation requires some of

the fα’s to be negative, and this shows that at there must exist some sources for

which the warping becomes singular (wα < 0) or for which the weak-coupling dilaton

expansion fails (qα < 0).

4. 6D de Sitter solutions

We next use the above results to construct a new class of solutions to 6D supergravity which

go beyond the known solutions [12, 20] by having 4 maximally-symmetric dimensions which

are not flat (see [21] for a recent discussion of similar solutions in the non-supersymmetric

context).

4.1 Equations of motion

The action, eq. (2.1), includes as a particular case that of 6D supergravity coupled to

various gauge multiplets [14], corresponding to the choices D = 6 and pi = 1, 2. In the 6D

case A = 0 for ungauged supergravities [23], while A = 2g2/κ4 ≡ ĝ2/8 for chiral gauged

– 9 –
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supergravity [15]. For the remainder of this section we focus on compactifications to 4

dimensions in the chiral gauged case in the presence of a 2-form flux, FMN , for which

d = 2, n = 4 and p = 1.

The equations of motion obtained with these choices are

¤ϕ +
κ2

4
e−ϕFMNFMN − κ2ĝ2

8
eϕ = 0 (4.1)

∇M

(

e−ϕFMN
)

= 0 (4.2)

RMN + ∂Mϕ∂Nϕ + κ2e−ϕFMP FP
N +

1

2
(¤ϕ)gMN = 0. (4.3)

Following ref. [12] we now make the following ansatz for the metric

ds2 = ĝMN dxMdxN = W 2qµν dxµdxν + a2dθ2 + a2W 8dη2, (4.4)

where the coordinates (η, θ) parameterize the 2 internal dimensions and qµν is a maximally-

symmetric 4D metric. (In what follows we take qµν to be the 4D de Sitter metric having

Hubble constant H. The anti-de Sitter case can be obtained from the final results by taking

H2 → −H2.) We assume axial symmetry by requiring W , a and ϕ to be functions only of

η. The gauge potential is taken to have the monopole form A = Aθ(η) dθ, and so the only

nonzero component of F is Fηθ(η).

We next write the ordinary differential equations which determine the unknown func-

tions ϕ, a and W and the unknown constant H. To this end, writing the (Maxwell)

equation for FMN as ∂M (
√−g e−ϕFMN ) = 0 implies (e−ϕFηθ/a

2)′ = 0, where primes

denote differentiation with respect to η. Integrating gives

Fηθ = Qa2eϕ, (4.5)

where Q is an integration constant, and so in particular FMNFMN = 2Q2e2ϕ/W 8.

Using ¤̂ϕ = ϕ′′/(a2W 8) the equation of motion for the dilaton similarly becomes

ϕ′′ +
κ2

2
Q2a2eϕ − κ2ĝ2

8
a2W 8eϕ = 0. (4.6)

Finally, the Einstein equations are obtained using the following expression for the

nonzero components of the Ricci tensor:

R̂µν = qµν

[

1

a2W 8

[

WW ′′ − (W ′)2
]

− 3H2

]

R̂θθ =
aa′′ − (a′)2

a2W 8
(4.7)

R̂ηη =
1

a2W 2

[

aW 2a′′ + 4a2WW ′′ − W 2(a′)2 − 8 aWa′W ′ − 16 a2(W ′)2
]

.

Two of the corresponding Einstein equations become

(µν) :
W ′′

W
− (W ′)2

W 2
− 3H2a2W 6 +

1

2
ϕ′′ = 0 (4.8)

(θθ) :
a′′

a
− (a′)2

a2
+ κ2Q2 a2eϕ +

1

2
ϕ′′ = 0 (4.9)
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while use of the ηη component of the Einstein tensor

Ĝηη =
2

aW 2

[

3H2a3W 8 − 2Wa′W ′ − 3 a(W ′)2
]

, (4.10)

allows the third to be written

(ηη) : 6H2a2W 6 − 4 a′W ′

aW
− 6(W ′)2

W 2
+

1

2
(ϕ′)2 +

κ2

2
Q2 a2eϕ − κ2ĝ2

8
a2W 8eϕ = 0 . (4.11)

For numerical purposes we use eqs. (4.6), (4.8) and (4.9) to determine ϕ′′, a′′ and

W ′′ as a function of ϕ, a, W , ϕ′, a′ and W ′, and by stepping forward in η generate a

solution as a function of η. By contrast, eq. (4.11) must be read as a constraint rather

than an evolution equation because it contains no second derivatives. The consistency of

this constraint with the evolution equations is guaranteed (as usual) by general covariance

and the Bianchi identities. Evaluating this constraint at the ‘initial’ point, η = η0, gives

H in terms of the assumed initial conditions.

4.2 Solutions

A general class of solutions to the field equations obtained using these ansätze is found in

ref. [12], which (using their conventions for which κ2 = 1
2 and ĝ = 4g/κ2 = 8g) has the

form

eϕ = W−2e−λ3η

W 4 =

(

Qλ2

4gλ1

)

cosh[λ1(η − η1)]

cosh[λ2(η − η2)]
(4.12)

a−4 =

(

gQ3

λ3
1λ2

)

e−2λ3η cosh3[λ1(η − η1)] cosh[λ2(η − η2)]

and F =

(

Qa2

W 2

)

e−λ3η dη ∧ dθ .

Here λi, ηi and q̂ are integration constants, which are subject to the constraint λ2
2 = λ2

1+λ2
3.

For all of these solutions the 4D metric is flat: qµν = ηµν .

These solutions have at most two singularities, and these are located at η → ±∞.

Locally changing coordinates to the local proper distance, η → r± with dr± = ∓aW 4 dη,

brings the singularities at η → ±∞ to r± = 0, and shows that these solutions have the

asymptotic form described in the previous sections — i.e. eqs. (3.1) and (3.3) — with the

powers [22]

α± =
λ2 + 3λ1 ∓ 2λ3

5λ2 − λ1 ∓ 2λ3
, w± =

λ2 − λ1

5λ2 − λ1 ∓ 2λ3
and q± = −2(λ2 − λ1 ∓ 2λ3)

5λ2 − λ1 ∓ 2λ3
. (4.13)

As is easily verified, these satisfy the Kasner-like conditions, eqs. (3.8) and (3.10), which

for n = 4 and d = 2 reduce to α± + 4w± = 1 and α2
± + 4w2

± + q2
± = 1. As discussed in

more detail in ref. [22], the above expressions imply that the curvature has a singular limit

as r± → 0 unless λ1 = λ2 (and so also λ3 = 0), in which case these singularities become

conical.
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Notice that eq. (2.9) relating brane asymptotics to the curvature of the 4D space in

this case specializes to

3H2

∫ ∞

−∞

dη a2 W 6 =

[

(

ln W +
ϕ

2

)′
]η=+∞

η=−∞

. (4.14)

Simplifying the right-hand side using the relation eϕ = W−2e−λ3η implies
(

ln W + 1
2ϕ

)′
=

−1
2 λ3, which vanishes only for the conical-singularity case. However we see that the right-

hand side of eq. (4.14) nevertheless vanishes once summed over the two singularities, con-

sistent with the flatness of the 4D geometries.

4.3 New solutions

We now turn to the construction of more general solutions to the same field equations, but

with the right-hand side of eq. (4.14) nonzero and so for which the maximally-symmetric 4D

geometries are not flat. Although we could do so by directly integrating the field equations

as given above, we instead follow ref. [12] and regard these equations as coming from the

following equivalent Lagrangian

L =
[

(ϕ′)2 − 8(ln W )′(ln a)′ − 12[(ln W )′]2
]

N−1 −

−Na2eϕ

(

κ2Q2 − κ2ĝ2

4
W 8 + 12H2W 6e−ϕ

)

. (4.15)

This agrees with the form used in [12] when H = 0. We temporarily re-introduce here the

‘lapse’ function, gηη = N2a2W 8, which we may choose coordinates to reset to unity after

it has been varied in the action. Varying with respect to N gives the constraint equation

(4.11) where we set N = 1 after variation.

The equivalent Lagrangian simplifies if we diagonalize the ‘kinetic’ terms, by defining

the new variables x, y and z using

ϕ =
1

2
(x − y − 2z) , ln W =

1

4
(y − x) and ln a =

1

4
(3x + y + 2z) . (4.16)

In terms of these variables the Lagrangian becomes

L = (x′)2 − (y′)2 + (z′)2 − κ2Q2 e2x +
ĝ2κ2

4
e2y − 12H2 e2y+z . (4.17)

We have set N = 1 but continue to keep in mind its role in determining the constraint.

The ‘potential’ terms simplify further if we also redefine

X =
1

2
ln(κ2Q2) + x

Y =
1

2
ln(ĝ2κ2/4) + y (4.18)

Z = ln(48|H2|/ĝ2κ2) + z

and so

L = (X ′)2 − (Y ′)2 + (Z ′)2 − e2X + e2Y − εe2Y +Z , (4.19)
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where ε = +1 for de Sitter and −1 for anti-de Sitter solutions. We now integrate the

equations of motion obtained from this lagrangian to obtain explicit solutions for the extra-

dimensional geometries. Since X has the equation of motion

X ′′ + e2X = 0 (4.20)

it decouples from the other variables. Its equation can be directly integrated to give

(X ′)2 + e2X = λ2
1, (4.21)

and so e−X = λ−1
1 cosh[λ1(η − η1)]. The remaining two nontrivial equations of motion

become in these variables

Y ′′ + e2Y − εe2Y +Z = 0

Z ′′ +
ε

2
e2Y +Z = 0 , (4.22)

along with the constraint λ2
1− (Y ′)2 +(Z ′)2− e2Y + εe2Y +Z = 0, whose solutions we obtain

numerically below.

In terms of these variables the asymptotic behaviour of the solutions assumed in pre-

vious sections near the singularities is linear in η. For example, using eqs. (4.16) and (4.18)

to write X in terms of ϕ and W , and then using the asymptotic forms given by eqs. (3.1)

and (3.2), we see

2X = ϕ + 2 ln a + ln
(

κ2Q2
)

≈ (q± + 2α±) ln r± ≈ ∓(q± + 2α±)η, (4.23)

where in the last step we have used that η ≈ ∓ ln r± in the asymptotic region η → ±∞.

Alternatively, from the exact solution for X it is clear that

lim
η→±∞

X → ∓λ1 η , (4.24)

where we take λ1 > 0, corresponding to the condition found earlier that (q± + 2α±) ≥ 0.

For the other dependent variables we may similarly write

lim
η→±∞

Y → ∓λ±
2 η,

lim
η→±∞

Z → ∓λ±
3 η, (4.25)

with independent constants λ±
i at η → ±∞. By substituting these asymptotic forms into

the differential equations, eqs. (4.22), we immediately obtain the two constraints λ±
2 > 0

and (2λ±
2 + λ±

3 ) > 0. Note that there is no restriction on the sign of λ±
3 . Finally, the

Kasner-like condition in the asymptotic region also imposes the following constraint on

these constants: (λ±
2 )2 = λ2

1 + (λ±
3 )2.

The solutions of ref. [12] discussed above satisfy these condition in the special case

where λ±
3 = ±|λ3|, and in this case we know the 4D geometries are flat. In general,

however, both the parameters λ±
3 are not determined by the one constant λ3, and so in the

general case the sum
∑

± f± does not vanish, leading (c.f. eq. (2.9)) to the conclusion that

the corresponding 4D geometries cannot be flat. We have been unable to obtain analytic

solutions to these equations, but there is no obstruction to their integration. They can be

solved numerically leading to numerical profiles such as those given in figures (1) and (2).
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10.50-0.5-1-1.5-2-2.5

0.5

0

-0.5

-1

-1.5

Figure 1: Typical behaviour of Y as a function of η for de Sitter solutions (ε = +1). The function

interpolates between two asymptotically linear regimes. The gradient is always positive as η → −∞
and negative as η → +∞.

0
2

-1

-2

1

-3

0-1-2

1

Figure 2: Typical behaviour of Z as a function of η for de Sitter solutions (ε = +1). The solutions

are asymptotically linear with different gradients. For a suitable choice of initial data the gradient

can change sign as in figure 1.

5. Discussion

In this paper our focus has been on solutions to the field equations of the coupled dilaton/p-

form/Einstein equations of some D-dimensional supergravities, for which n of the dimen-
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sions are maximally symmetric. Such solutions could arise, for instance, in compactifica-

tions from D to n dimensions within a Kaluza-Klein scenario.

Our main result in this paper is to provide a fairly general relation between the cur-

vature of the maximally symmetric n dimensions in terms of the (potentially singular)

asymptotic behaviour of the various fields in the vicinity of any brane sources which may

be situated about the internal d = D − n dimensions. This relationship allows an explicit

connection to be made between this curvature and the properties of the branes which source

the geometry. It is only once this connection is made explicit that it becomes possible to

address whether the existence of flat solutions requires a technically unnatural fine-tuning

of brane properties.

In particular, we use this connection in chiral 6D gauged supergravity to show the

existence of compactifications to 4D de Sitter and anti-de Sitter geometries having arbitrary

curvature. Since the curvature can be arbitrary it can in particular be small, implying that

these new solutions can be obtained by small perturbations from the previously-known

flat solutions. Since many of the flat solutions, such as those described by the rugby ball

of ref. [5], are known to have positive tensions it follows that at least some of these new

solutions can also be sourced by branes having physically reasonable properties.

The existence of such solutions certainly complicates a self-tuning solution of the cos-

mological constant problem along the lines of Ref. [5] in several ways because it shows that

maximal symmetry in 4 dimensions is insufficient to guarantee these dimensions must be

flat. This means that there are now two ways in which perturbations on a brane might

destabilize a flat solution: either by starting a time-dependent runaway or by generating

a maximally-symmetric but curved 4 dimensions. The key issue which remains is whether

the choices of brane properties which exclude these two options are stable under renormal-

ization. The results of this paper provide the prerequisite for answering this issue, because

they show that the magnitude of the effective cosmological constant problem is determined

by the asymptotic form of the bulk fields, which are in turn fixed by the properties of the

brane action which we renormalize.

For instance, let us suppose that the branes do not couple to the dilaton, so that

λ = 0 in equation (3.12), and suppose that this condition were preserved under quantum

corrections (something which must be explicitly checked). In this case we anticipate that

the boundary condition for the dilaton near each brane should be ϕ′ = 0, and so q± = 0.

However in such a case the 6D Kasner conditions demand that the only allowed solutions

are those describing conical branes, and for these our sum-rule implies the only maximally

symmetric solution is Minkowski. Thus if we start out in one of the conical GGP solutions

and perturbation (like renormalization or a phase transition on one brane) changes the

effective brane tension without growing a dilaton coupling, then the de Sitter and anti-de

Sitter minima discovered here cannot be reached. Furthermore the system cannot evolve

to one of the other non-conical GGP solutions unless some nontrivial dilaton coupling

develops. In such a case it is likely that the system evolves towards an as-yet-undiscovered

time-dependent runaway solution. If so, the central question would become how fast the

runaway is, and can it successfully describe the observed Dark Energy? We intend to

return to these questions in a subsequent publication.
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